
Trees 🌲

Why We Need To Know
We need to know which data structure to utilize within certain use cases so
that we may optimize our program's functionality as well as usability. We
need to know when to use these structures and how to implement them.

Time Complexity Of Data Structures

Operation Vector Linked
List Deque Tree

(Unordered)
Hashtable
(Unordered)

Insert front O(n) O(1) O(1) O(log(n)) NA
Insert Back O(1) O(1) O(1) O(log(n)) NA
Insert Middle O(n) O(1) O(N) O(log(n)) O(1)*
Remove Front O(n) O(1) O(1) O(log(n)) NA
Remove back O(1) O(1) O(1) O(log(n)) NA
Remove
Middle O(n) O(1) O(n) O(log(n)) O(1)*

Random
Access O(1) O(n) O(1) O(log(n)) NA

Search O(n) O(n) O(n) O(log(n)) O(1)*

star is the Average Complexity
C++ STL ordered map and set: balanced tree
C++ STL unordered map and set: Hash table

Theory and Terminology

Tree

- The tree is a connected graph with no cycles (no circles) - Consequences:
- Between any two vertices, there is exactly one unique path

Rooted Tree

- A rooted tree - is connected - has no cycles - has exactly one vertex
called the root of the tree - Consequences - Can be arranged so that the root



is at the top - parent vs. child nodes and edges - sibling nodes - Nodes of
the same parent nodes - leaf nodes - Nodes without children nodes

A unique path from the root to any vertex is a descending path
Depth of vertex

Length of the unique descending path from the root to v
the root is at a depth 0

The height of a vertex v is the length of the longest path from v to one of
its leaves
The height of a tree is the height of the root

Equal to the max depth



Rooted Tree: Recursive Definition

A graph with N nodes and N-1 edges
Graph has...

one root r
Zero or more non-empty subtrees

Tree Traversal

Often defined recursively
Each kind corresponds to an iterator type
Iterators are implemented non-recursively

Step Description
1 Go to the root
2 Visit child subtrees

// Tree Node 
struct TreeNode{

Object element;
TreeNode *firstChild;
TreeNode *nextSibling;

}

C++



Depth First Search
Begin at root
Visit vertex on arrival

An implementation may be a recursive, stack-based, or nested loop
For more information on depth-first search visit Stacks notes

Postorder Transversal

The left subtree is traversed first
Then the right subtree is traversed
Finally, the root node of the subtree is traversed

Inorder Transversal

The left subtree is traversed first
Then the root node for that subtree is traversed
Finally, the right subtree is traversed

Preorder Transversal

The root node of the subtree is visited first.
Then the left subtree is traversed.
At last, the right subtree is traversed.

Binary Tree

Each node has at most two children, referred to as the left child and the
right child.
Every layer except maybe the bottom is fully populated with vertices.
All nodes at the bottom level must occupy the leftmost spots consecutively



A complete binary tree with n vertices and h height satisfies

2H ≤ n < 2H+1

H ≤ log(n) < H + 1

H = floor(log(n))



Trees 2 🌲

Binary Trees
A binary tree is a rooted tree with no vertex
has more than two children

left and right child nodes

A binary tree is complete iff every layer except possibly the bottom is fully
populated with vertices. All nodes at the bottom level must occupy the
leftmost spots consecutively.
A complete binary tree with n vertices and h height satisfies

2H ≤ n < 2H+1

22 ≤ 7 < 22+1, 22 ≤ 4 < 22+1

2H ≤ n < 2H+1

H ≤ log(n) < H + 1

H = floor(log(n))

Proof:
At level k ≤ H − 1, there are 2K vertices
At level k = H, there is at least 1 node, and at most 2H vertices
Total number of vertices when all levels are fully populated (maximum
level k)

n = 20 + 21+. . . +2k

n = 1 + 21 + 22+. . . 2k (Geometric Progression)
n = 1(2k+1−1)

2−1

n = 2k+1 − 1

Case 1:

// Syntax
struct BinaryNode{

Object element;    // The Data in the node
BinaryNode *left;  // & of Left Child
BinaryNode *right; // & of Right Child

}

C++



A tree has the maximum number of nodes when all levels are fully populated

Let k = H

n = 2H+1 − 1

n < 2H+1

Case 2:

The tree has a minimum number of nodes when there is only one node in the
bottom level

Let k = H − 1

n′ = 2H − 1

n ≥ n′ + 1 = 2H

Combining two conditions we have

2H ≤ n ≤ 2H+1

Representation of Complete Binary Tree
All trees can be represented by the generic representation shown in the
code above
Due to the structure of a complete binary tree, it cannot be represented by
a vector

As long as one can figure out the parent/child relationship
Parent/child relationship embedded in the index of parent and child
Vector elements carry data

Tree Structure : Vector
Vector indices carry tree structure
Index order = levelorder
The tree structure is implicit
Uses integer arithmetic for tree navigation
No need to explicitly store the tree node pointers

Tree Navigation : Vector
The root at v[0]

Parent of v[k] = k[(k-1)/2]

Left child of v[k] = v[2*k + 1]



Right child of v[k] = v[2*k]+1

Binary Tree Traversal

Inorder traversal

Definition
Left child
Vertex
Right Child (recursive)

Algorithm
Depth-first search (visit between children)

Other Traversals that apply to binary case

Preorder
Trees 🌲

Postorder
Trees 🌲

Level order traversal

A tree can be rebuilt from its inorder and preorder (or postorder) traversal
results

Rebuild Tree from Traversal
Let each node be associated with a letter, traversals print the letters when
visiting a node. The results are:

Preorder: "ABDEC"
Postorder: "DEBCA"
Inorder: "DBEAC"



Rebuild tree from preorder + inorder traversal

Find the root from the preorder result: A
Decide left and right subtrees

Find the letter for the root in the inorder string and decide the inorder
string for the two subtrees

Decide the preorder string for left and right subtrees
Inorder for the traversal string length should be equal to another string
length, extract preorder strings from the whole preorder string

Recursively do this to the sub-trees

Build Expression Tree from Postfix Expression

Rebuilding with a tree

stack<T> s;
while(s != /*end of postfix expression*/){

// Get the next token
if(token == /* operand */){

// Create a new node with the operand
s.push(/* New Node */);

}
if(token == /* operator */){

s.pop(); // corresponding operands from S
// Create a new node with the operator (and 

corresponding operands as left/right children)
s.push(/* New Node */);

}
} // s.top is the final binary expression 

C++



Postorder string: FECAHJIGB
Inorder string: CFEABHGJI

Root: B

Last in the post-order string
Left Subtree: CFEA
Before root (B) in the inorder string
Right Subtree: HGJI
After root (B) in the inorder string



Trees 3 🌴
Everything on the left should be smaller than the right within a binary search
tree. In other words the smallest element must be on the left.

The complexity must be O(n), due to all nodes needing to be traversed
Assumes nodes are organized in a totally ordered binary tree

Consequences

The smallest element in a binary search tree is the "leftmost" node.
The largest element is the rightmost node
Inorder traversal of the BST encounters nodes in increasing order

Search In BST

Compare the search value to the current node, and decide whether to go
left or right (depending if less (left) or more (right).
Runtime ≤ descending path length ≤ depth of tree or height of tree

/* How It Works */

// Note: This is my personal code idea not concrete implementation, 
check documentation for better code example

void TreeAddNode(Node* currNode, Node* nodeAdd){
if(currNode != nullptr){

if(currNode->val > nodeAdd->val){
TreeAddNode(currNode->left, nodeAdd);

}
else if(currNode->val < nodeAdd->val){

TreeAddNode(currNode->right, nodeAdd);
}

} else {
if(currNode->val > nodeAdd->val){

currNode->left = nodeAdd;
}
else if(currNode->val < nodeAdd->val){

currNode->right = nodeAdd;

C++



Delete Node From Tree

Must restructure the tree
Find the similar branches to restructure
Pick largest node in the subtree to be a new root

Finding the Minimum

We can do this recursively, by going all the way to the left, aka following
all of the left nodes
If we have no left notes then we are done with following the tree (we have
found the minimum value)

Tail Recursion

Recursion is in the last line of the program
Can be replaced with a loop (some compilers do this by default), very
efficient

Finding the Maximum

Non recursive

Implementation :

Deletion Example

}
} return;

}

Node* findMax(){
if(t!= nullptr){

while(t->right != nullptr){
t=t->right;

} 
return t;

}
}

C++

#include <iostream>
using namespace std;

C++



Destructor

Left tree first
Right tree second
loop, Post order traversal, can use any traversal

Course Code Examples

IO Examples :

void deleteNode(const Comparable& x, BinaryNode* &t){
    if(t == nullptr){
        return;
    }
    if(x <t>element){
        remove (x, t->left);
    }
    else if(t->left != nullptr && t->right != nullptr){
        t->element = findMin(t->right)->element;
        remove(t->element, t->right);
    } else{
        BinaryNode * oldNode = t;
        t = (t->left != nullptr) ? t->left: t->right;
        delete oldNode;
    } 

// IO Examples

Template <typename Comparable>

Class BinarySearchTree {

   public:

BinarySearchTree();

BinarySearchTree(const BinarySearchTree & rhs); // copy

BinarySearchTree(BinarySearchTree &&rhs); // move

~BinarySearchTree();

C++



Finding Smallest Element :

  

const Comparable & findMin() const;

const Comparable & findMax() const;

bool contains(const Comparable &x) const;

bool isEmpty() const;

void printTree(ostream & out = std::cout) const;

  

void makeEmpty();

void insert(const Comparable &x);

void insert(Comparable &&x); // move

void remove(const Comparable &x);

  

BinarySearchTree & operator=(const BinarySearchTree &rhs);

BinarySearchTree & operator=(BinarySearchTree && rhs); // move

BinaryNode * findMin( BinaryNode *t ) const

    {

        if( t == nullptr )

            return nullptr;

        if( t->left == nullptr )

            return t;

C++



Finding the Largest Element :

Deletion :

Destructor :

        return findMin( t->left );

    }

BinaryNode * findMax( BinaryNode *t ) const
    {
        if( t != nullptr )
            while( t->right != nullptr )
                t = t->right;
        return t;
}

C++

void remove( const Comparable & x, BinaryNode * & t ) {

        if( t == nullptr )

            return;   // Item not found; do nothing

        if( x < t->element )
            remove( x, t->left );
        else if( t->element < x )
            remove( x, t->right );
        else if( t->left != nullptr && t->right != nullptr )  { // 
two children
            t->element = findMin( t->right )->element;
            remove( t->element, t->right );
        }
        else {
            BinaryNode *oldNode = t;
            t = ( t->left != nullptr ) ? t->left : t->right;
            delete oldNode;
        }
    }

C++

    ~BinarySearchTree( )
    {
        makeEmpty( );

C++



Inorder Traversal :

    }
 
    /**
     * Internal method to make subtree empty.
     */
    void makeEmpty( BinaryNode * & t )
    {
        if( t != nullptr )
        {
            makeEmpty( t->left );
            makeEmpty( t->right );
            delete t;
        }
        t = nullptr;
    }

    // Print the tree contents in sorted order.
    void printTree( ostrem & out ) const
    {
        if( isEmpty( ) )
            cout << "Empty tree" << endl;
        else
            printTree( root, out);
    }

    /**
     * Internal method to print a subtree rooted at t in sorted 
order.
     */
    void printTree( BinaryNode *t, ostream & out ) const
    {
        if( t != nullptr )
        {
            printTree( t->left );
            out << t->element << endl;
            printTree( t->right );
        }
    }

C++



B-Trees 🌳

Balanced Binary Search Tree

H = O(Log(N)). Insert, remove, and search all have complexity of O(log(n)) = O(Log2(N))
Each Node has a maximum of 2 children

C-ary Tree in Tree

N = C0 + C1+. . . +CH

N = CH+1−1
C−1

≈ CH

So H ≈ log∈(H) = Log2(N)
Log2(C)

If we increase the max number of children from 2 to C and maintain a balanced tree, the height is
reduced by (Log2(C))

M-ary Trees
Allow up to M children for each node

Instead of 2 max for binary trees
A complete M-ary tree of N nodes has a depth of logMN

Each node has (M-1) keys to decide which branch follows
Larger M, smaller tree depth
Balancing M-ary
1. Restrict the tree shape like in AVL
2. Restrict the number of children each node can have
B-Tree takes the second approach, easier to implement

Balanced Trees (B-Tree)

B-Tree is an M-ary search tree with restrictions
1. Data items stored at the leafs
2. Non-lead nodes store up to M-1 Keys to guide search
3. The root can be a leaf or have between 2 to M children
4. Non lead Nodes except the root have between ceil M/2 and M children
5. All leaves are at the same depth, have between ceil(L/2) and L data items
Keys in each node are sorted. The i'th key in a node is the smallest data in the i+1 subtree



Deletion

Do a search to find the leaf node to delete
If the lead still has at least L/2 data entries, done
Else, merge the data with neighboring leaf to ensure L/2 data entries



AVL Trees 🌴
Binary search tree has simple search, insert, and remove

O(H) - H is the height of tree
Binary search does not guarantee small H, in worst case O(n)

Ideal to maintain a binary search tree who's height H is O(log(N))
Search, insert, min, max all O(log(N))
Balanced Tree

Adelson- Velski and Landis

A balanced binary search tree
Every node in tree, height of left and right subtree only differ by 1 (at most)
Guarantees O(Log(N))

Height of AVL Tree

For every node in tree, height of left and right subtree can differ by at most 1
Let the number of nodes in the smallest AVL tree with height of H be NH

The height of left and rightmost subtrees must have at least NH−2

Tree size at least doubles when H increases by 2, so the tree only needs to be
twice the height as the full complete binary tree to have the same number of tree
nodes
What is a balance condition

The absolute difference of heights of left and right subtrees at any node is less
than 1

If we can maintain the balance condition in the insert and remove all operations to
the AVL tree (with O(H) for each insert and remove we much have a data structure
that archives O(log(N))) for search, insert and remove

Overhead

Extra space needed for maintaining height information at each node, which is used
to maintain balance of tree

Advantage

Insert, Remove, and Search are all O(Log(N))



Summary
Find the deepest node whose AVL property is violated

Consider only the nodes from the root to the new node
Preform the rotation

Delete
Single rotation or double rotation, both are O(1)
Depends on the shape of tree for single or double
Delete can be done by deleting as in BST delete, and then fix all nodes along the
path from the root to the deleted node, this would take at most O(Log(N))

Implementation

Important

Must Maintain Balance!
This can be done through shifting the formation of the tree as shown above

struct AvlNode
{
        Comparable element;
        AvlNode   *left;
        AvlNode   *right;
        int       height;

C++



Insertion

        AvlNode( const Comparable & ele, AvlNode *lt, AvlNode *rt, int 
h = 0 )
          : element{ ele }, left{ lt }, right{ rt }, height{ h } { }
        
        AvlNode( Comparable && ele, AvlNode *lt, AvlNode *rt, int h = 0 
)
          : element{ std::move( ele ) }, left{ lt }, right{ rt }, 
height{ h } { }
};

 /**
  * Return the height of node t or -1 if nullptr.
  */
 int height( AvlNode *t ) const
 {
        return t == nullptr ? -1 : t->height;
 }

 /* Internal method to insert into a subtree.
     * x is the item to insert.
     * t is the node that roots the subtree.
     * Set the new root of the subtree.
*/
    void insert( const Comparable & x, AvlNode * & t )
    {
        if( t == nullptr )
            t = new AvlNode{ x, nullptr, nullptr };
        else if( x < t->element )
            insert( x, t->left );
        else if( t->element < x )
            insert( x, t->right );
        
        balance( t );
    }

C++

// Assume t is balanced or within one of being balanced
    void balance( AvlNode * & t )
    {
        if( t == nullptr )
            return;
        
        if( height( t->left ) - height( t->right ) > ALLOWED_IMBALANCE 
)
            if( height( t->left->left ) >= height( t->left->right ) )

C++



Single Rotation

Double Rotation

Remove

Just do the binary search tree remove, and then call balance (t) at the end.

Example

                rotateWithLeftChild( t );
            else
                doubleWithLeftChild( t );
        else
        if( height( t->right ) - height( t->left ) > ALLOWED_IMBALANCE 
)
            if( height( t->right->right ) >= height( t->right->left ) )
                rotateWithRightChild( t );
            else
                doubleWithRightChild( t );
                
        t->height = max( height( t->left ), height( t->right ) ) + 1;
    }

void rotateWithLeftChild(AVLNode * &k2){
AVLNode * k1 = k2->left;
k2->left = k1->right;
k1->right = k2;
k2->height = max( height(k2->left), height( k2->right)) +1;
k1->height = max( k1->left ), k2->height) + 1;
k2 = k1;

}

C++

void doubleWithLeftChild(AVLNode * & k3){
rotateWithRightChild(k3->left);
rotateWithLeftChild(k3);

}

C++

T1, T2, T3 and T4 are subtrees.

         z                              y 
        / \                           /   \
       y   T4    Right Rotate        x      z
      / \        - - - - - >       /  \    /  \ 
     x   T3                       T1  T2  T3  T4

Markdown



    / \
  T1   T2



Stacks

Stack

Last in First Out

Stack Model - LIFO

The top allows access to the top of the "Stack"

Any list implementation could be used to make a stack

Operating on one end

Vector/List ADTs

push_front()/pop_front()

push_back()/pop_back()

Stack Uses

Depth-first search/backtracking

Evaluating postfix expressions

Converting infix to postfix

Function calls (runtime stack)

Recursion

Runtime Stack

Static

Executable code

Global variables

Stack

Push for each function call

Pop for each function return

#include <stack>
// Stack operations
stack<T> stackExample;
stackExample.push();
stackExample.pop();
stackExample.top();
stackExample.empty();
stackExample.size();
// with constructor & destructor



Local variables

Heap

Dynamically allocated memories

new and delete

Depth First Expanded

If there is an unlisted neighbor go there

Retreat along the path to find unlisted neighbor, it cannot go deeper

If there is a path from start to goal, DFS finds one such path

Discover a path from start to the goal

Start from Node start stop if Node reaches goal

Keep Going Deeper

// Depth First Search
DFS() {
stack<location> S;
//Mark the start location as visited

S.push(start);
while (!S.empty()) {

t = S.top();
if (t == goal) Success(S);
if (// t has unvisited neighbors) {

//Choose an unvisited neighbor n
// mark n visited;
S.push(n);

} else {
BackTrack(S);

}
}
Failure(S);

}

/*



Postfix Expressions

Use a stack of tokens

Repeat

If operand, push onto the stack

If operator

pop operands off the stack

evaluate operator on operands

push the result onto the stack

Until expression is read

Return top of the stack

Another Implementation Of DFS
  ____________________________________________________ 
*/

BackTrack(S) {
while (!S.empty() && S.top() has no unvisited neighbors) {

S.pop();
}

}

Success(S) {
// print success
while (!S.empty()) {

output(S.top());
S.pop();

}
}

Failure(S) {
// print failure
while (!S.empty()) {

S.pop();
}

}

Evaluate(postfix expression) {

// use stack of tokens;
while(// expression is not empty) {



Postfix Visualized

t = next token;
if (t is operand) {

// push onto the stack
} else {

// pop operands for t off stack
// evaluate t on these operands
// push the result onto the stack

}
}
// return top of stack

}



Queue

Queue ADT - FIFO

Elements of some proper type of T

Operations

Feature: First In, First Out

void push(T t)

void pop()

T front()

bool empty()

unsigned int size()

Constructors and destructors

Operation Number Command Stack

1 Q.push(Ant) Ant

2 Q.push(Bee) Bee

3 Q.push(Cat) Cat

4 Q.push(Dog) Dog

What if we were to do Q.pop()?

Operation Number Command Stack

1 Q.push(Bee) Bee

2 Q.push(Cat) Cat

3 Q.push(Dog) Dog

Stack Uses

Buffers

Breadth first search

Simulations

Producer-Consumer Problems

Breadth first search Expanded

Used to find the shortest path to the start to the goal

Starting from Node start

Visit all neighbors of the node



Stop

if the neighbor is the goal

Otherwise

Visit neighbors two hops away

Repeat until visiting all neighbors

Breadth First Visualized



Linked Lists

Singly Linked List

push_front- Make the new node the head pointer, and make it point to the previous head

node

push_back- Make the tail node point to the new back node, and the back node point to null

pop_front- Make the next node, following the head node, the new head node

pop_back- Make the node before the tail node point to null, rather than the tail node

Efficiently = O(1) time complexity

Doubly Linked List

Contains a reference to the next element, as well as a reference to the previous element

// Insertion
auto I = Cities.begin();

for (; I != Cities.end(); ++I) {

if (“Miami” == *I) {
break;
}

}

//Insert the new string

Cities.insert(I, “Orlando”);

// “Jacksonville”, “Tallahassee”, “Gainesville”, “Orlando”, “Miami”

// Remove Orlando
List<string>::iterator I = Cities.begin();

// auto I = Cities.begin();  // c++11
while( I != Cities.end()) {
if (“Orlando” == *I) {

I = Cities.erase(I);
} else {

I++;



Node -

Data Value

Pointers to the previous and next element

Defined within the List class, with limited scope

Creating A List

Insertion within List

}}

template <typename Object>

class List

{
  private:    
    struct Node
    {
        Object  data;
        Node   *prev; // Points to previous Node
        Node   *next; // Points to next Node
        
        Node( const Object & d = Object{ }, Node * p = nullptr, Node * n = 
nullptr )
          : data{ d }, prev{ p }, next{ n } { }

        Node( Object && d, Node * p = nullptr, Node * n = nullptr )
          : data{ std::move( d ) }, prev{ p }, next{ n } { }
    };

iterator insert( iterator itr, const Object & x )

    {

        Node *p = itr.current;

        ++theSize;



Empty List

Erase Node

        return iterator( p->prev = p->prev->next = new Node{ x, p->prev, p 
} );

    }

  

  iterator insert( iterator itr, Object && x )

    {

        Node *p = itr.current;

        ++theSize;

        return iterator( p->prev = p->prev->next = new Node{ std::move( x 
), p->prev, p } );

    }

  private:
    int   theSize;
    Node *head;
    Node *tail;
    void init( )

// Doubly Linked List Init 
    {
        theSize = 0;
        head = new Node;
        tail = new Node;
        head->next = tail; // Head -> &Tail
        tail->prev = head; // Tail (previos) -> &Head
    }

};

iterator erase( iterator itr )



    {

        Node *p = itr.current;

        iterator retVal( p->next );

        p->prev->next = p->next;

        p->next->prev = p->prev;

        delete p;

        --theSize;

        return retVal;
    }

 iterator erase( iterator from, iterator to )

    {
        for( iterator itr = from; itr != to; )
            itr = erase( itr );
        return to;
    }



Priority Queues (Heaps)

Each job within a computer takes turns using the cpu. If a job comes earlier than another job it needs to
be executed earlier. If a job has been scheduled, it should not be scheduled a second time if there exists
a job that hasn't been scheduled once. The queue is the answer.

first in first out
when a new job comes in it is put at the end of the queue

Regular Queues

Enqueue adds a new element
Dequeue removes the eldest element
Insert adds a new element
deleteMin removes the minimum element in a priority queue

Application of Priority Queue

Find the shortest job
Scheduling next event based on time
find greedy algorithms

Applications of Priority Queue

Implemented as adaptor class around



Linked list
O(N) worst case in insert or deleteMin

AVL Tree
O(log(N)) worst case on insert and delete
Can be overkill when compared to heap, due to being sorted

Heaps
O(log(N)) worst case for both insert and delete

Partially Ordered Trees (POT)

There is an order relation <= defined for the vertices of T
For any vertex p and any child c of p, p <= c
smallest element is the root
no conclusion can be drawn about the children

Binary Heaps

A binary heap is a partially ordered complete binary tree
The tree is completely filled on all levels, with the exception of possibly the lowest
d-Heap, a parent node can have d children
just refer to as heaps

A vector representation of a complete binary tree is as follows...
Storing element in a vector in level order

Parent of v[k] = v[k/2]
Left Child of v[k] = v[2*k]
Right Child of v[k] = v[2*k + 1]

Basic Heap Operations



Insert

1. Create a hole at the next leaf
2. // Repair upward
3. Repeat
4. Locate Parent
5. if POT not satisfied (should x inserted in the hole)

1. sliding parent element to hole
6. else

1. stop

Delete Min

Move the last element to the root and then fix the heap
Find the smaller child. If the new element is larger than the smaller child, swap with the small child
(POT property violated), swap with the small child
Repeat in the new subtree

1. Delete the root
2. // root becomes a hole
3. Must move last element (leftmost node) to somewhere
4. let y be the last element (rightmost node)
5. Repeat

1. find the smaller child of the node
2. if POT not satisfied should y inserted in hole, sliding smaller child in whole

6. else
1. stop

7. insert y into hole

Constructor
Insert each element
Worst Case O(N(Log(N))
First insert all elements into a tree without worrying about POT, then satisfy the POT



Hash Table
Hash Tables support insert, remove and search in O(1) time.

Issues that need to be solved

Key may or may not be an integer
Need to use a function to map the key into an integer. This part of the
functionality of a hash function. To hash the key into an index.

Key space can be infinite
Examples: The key is a string of any length
Need to restrict the hash function to return a small value in order to index into
the hash table

Hash typically map a fairly large number
Use a hash function to map key: integer or non integer to a relatively small integer
as the index to the hash table
To get good performance we must also use the hash function to evenly map keys
into different indices of the has table

Hashing

Data items stored in an array of some fixed size
Hash table

Search performed using some part of the data item
key

Used for performing insertions, deletions, and finds in constant average time O(1)
Operations requiring ordering information not supported efficiently

Important
Idea Behind Hash Table: O(1) is the worst case for insert, remove, search



Applications of Hash Tables

Comparing search efficiency of different data structures:
Vector, list: O(N)
Binary search tree: O(Log(N))
Hash table: O(1)

C++ STL: std::unordered_map , std::unordered_set
Compilers to keep track of declared variables

Symbol tables

Game programs to keep track of positions visited
Transportation table

On-line spelling checkers

Hashing Functions

Map keys to integers
Hash(key) = Integer

Evenly distributed index values
Even if the data is not evenly distributed

Assumptions:
K: an unsigned 32 bit int
M: the number of buckets (the number of entries in a hash table)



Goal:
If a bit is changed in K all bits are equally likely to change for Hash(K)
So that items evenly distributed in hash table

Simple Function

Hash(K) = K % M

Where M is of any integer value
Values of K may not be evenly distributed, however Hash(k)  must be evenly
distributed.
If M = 10, K = 10, 20, 30, 40
Then K % M = 0, 0, 0, 0, 0 ...

Another Example

Hash(K) = K % P

Where P is Prime
Suppose then P = 11, K = 10, 20, 30, 40
Then K % P = 10, 9, 8, 7

A well designed hash table always has a prime number of entries

Hashing a Sequence of Keys

K = {K1, K2, . . . , Kn}
Hash("test") = 98157

Design Principles
Use the entire key
Use the ordering information

Use the Entire Key

Use the Ordering Information

unsigned int Hash(const string& Key){
unsigned int hash = 0;
for(string::size_type k =0; j !- K.size();++j) 
{

hash = hash ^ Key[j]; // Xor
}
return hash;

}
// Problem: Hash("ab") == Hash("ba")

C++



Better Hash Function

Even if the function just returned 0 it would still be a legit hash function. Replacing
the hash function in any hash table with this would still work but the O(1) complexity
may not be maintained.

unsigned int Hash(const string &Key){
unsigned int hash = 0;
for(size_type j =0; j != Key.size(); ++j)
{

hash = hash ^ Key[j];
hash = hash * (j % 32);

}
return hash;

}

C++

unsigned int Hash(const string& S){
size_type i;
long unsigned int bigval = S[0];
for(i = 1; i < S.size(); ++i){

// low16 * magicNumber
bigval = ((bigval & 65535) * 18000)
+ (bigcal >> 16) // high16
+ S[i]; 

}
bigval = ((bigval & 65535) * 18000) + (bigval >> 16);
// bigval = low16 * magicNumber + high16

// return low16
return bigval & 65535;

}

C++



Hash Table 2

Recap of Hash Table 1 Notes

1. The basic idea of hash table is to approximate a giant array that is indexed by the key
2. A hash table is an array where the index of the data is computed (by the hash function) based on the

key of the data

Index = hash(key) % table_size;

3. The situation when two keys are hashed into the same index is called a conflict or collision
4. A good hash function doesn't remove all conflicts. It statistically minimized the probability of collision

across the key space

Separate Chaining

Each table entry is a list - the hash table is physically an array of lists
Multiple keys mapped to the same entry will be stored in the list

Assumptions: hash(k) = k % 10
Each array[i] , 0 ≤ i < size, is a list



Search with Separate Chaining

To search for a key X we must do the following
index = hash(X)

Check list array array[index]  to see if X is in it.

Check the above graphic, using the assumptions for a value.

Inserting with Separate Chaining

To insert key X we must do the following
index = hash(X)

Insert X into list array[index]

Check the above graphic using the assumptions to insert a value

Delete with Separate Chaining

To delete key X we must do the following
index = hash(X)

Insert X into list array[index]

Check the above graphic using the assumptions to remove a value

Separate Chaining

With separate chaining, the hash table is an array of containers
Insertion, removal and deletion can be so quick because it only needs to do one calculation to find the
location rather than comparing values
The number of lists in the hash table needs to be roughly the same as the number of data items in the
hash table
The load factor (λ) of a hash table with separate chaining is the ratio of the number of elements in the
table to the table size
With separate chaining, the average list size is equal to λ!
Typically, we want λ ≈ 1
λ decides when to perform rehash (expanding the table)

Implementation

template <typename HashedObj>
class HashTable
{
public:

explicit HashTable(int size=101);
bool contains(HashedObj& x) const;

void makeEmpty();
bool insert(const HashedObj& x);
bool insert(HashedObj&& x);
bool remove(const HashedObj& x);

private:
vector<list<HashedObj>> theLists;
int currSize;

void rehash();
size_t myhash(const HashObj& x) const;

C++



Hashed Object

Class Example

Separate Chaining

}

template <typename key>
class Hash {
public:

size_t operator()(const key& k) const;

};
template <>
class Hash<string>{ // Implementation
public:

size_t operator()(const string& key){
// ...

}
};

C++

class Employee{
public:

const string& getName() const{
return name;

}
bool operator==(const Employee& rhs) const
{

return getName() == rhs.getName();
}
bool operator!=(const Employee& rhs)const {

return !(*this == rhs);
}

private:
string name;
double salary;
int seniority;
// Aditional private members 

};
template<>
class hash<Employee>{
public:

size_t operator()(const Employee& item){
static hash<string> hf;
return hf(item.getName());

}
};

C++

// Separate Chaining 
size_t myhash(const HashedObj& x){

static hash<HashedObj> hf;
return hf(x) % theList.size();

}

// Separate Chaining Cont'd

C++



Hash Tables without Chaining

Try to avoid buckets with separate list - no list, just an array of elements
Still need to result conflicts - use Probing Hash Tables

If collision occurs, try another cell in the hash table.
More formally,, try cells h0(x),h1(x),h2(x),h3(x), . . . in succession until a free cell is found.
hi(x) = hash(x) + f(i)

AND f(0) = 0

Linear Probing

f(i) = i
- Try hash(x), hash(x) + 1, hash(x) + 2, ...

Insert (assume no duplicate keys)

1. Index = hash(key) % table_size;
2. If table[index]  is empty, put informations (key and others) in entry table[index]

// More Function Definitions
void makeEmpty(){

for(auto& theList: theList){
theList.clear();

}

}

bool contains(const HashedObj& x) const{
auto & whichList = theList[myhash(x)];
return find(begin(whichList), end(whichList) != end(whichList));

}

bool remove(const HashObj& x){
auto& whichList = theList[myhash(x)];
auto itr = find(begin(whichList), end(whichList), x);

if(itr == end(whichList)){
return false;

}
whichList.erase(itr);
--currentSize;
return true;

}

bool insert(const HashedObj& x){
auto& whichList = theList[myhash(x)];
if(find(begin(whichList), end(whichList), x) != end(whichList)){

return false;
}
whichList.push_back(x);

// rehash... 
if(++currentsize > theList.size()){

rehash();
}
return true;

}



3. If table[index]  is not empty then, index++; index = index % table_size; goto 2

Search (key)

1. Index = hash(key) % table_size;
2. If ( table[index]  is empty) return -1 (not found)
3. Else if (table[index].key == key) return index;

4. index++; index = index % table_size; goto 2;

Delete

Can be tricky, must maintain the consistency of the hash table, consider the number 89 in the table
above.
What is the simplest deletion strategy you can think of??

Quadratic Probing



Double Hashing

// Nested within Hash Table class
enum EntryType{

ACTIVE,
EMPTY,
DELETED

};

struct HashEntry{
HashedObj element;
EntryType info;
HashedEntry(const HashedObj& e = HashedObj{}, EntryType != EMPTY)

: element{e}, info{|}{}
HashEntry(HashedObj&& e, EntryType != EMPTY)

: element{std::move(e)}, info{|}{}
};

C++



Sorting

Comparison Based

Comparison based sorting: sorting based on the comparison of two items
In place sorting

Sorting of data structure does not require any external data structure for sorting the intermediate steps
External sorting
Sorting of records not present in memory
Stable sorting
If the same element is present multiple times, then they retain the original positions

Stable
input- 2, 3, 1, 15, 11, 23, 1
output- 1, 1, 2, 3, 11, 15, 23

Not Stable
input- 2, 3, 1, 15, 11, 23, 1
output- 1, 1, 2, 3, 11, 15, 23

Some Sorting Algorithms

Simple sorting algorithms, performing only adjacent exchanges. Bubble sort and insertion sort are examples
of this.

Bubble Sort

Simple and uncomplicated
compare to neighbor, swap if x is greater than y

Step View
Step 1 2 3 1 15

Step 2 2 1 3 15

Step 3 1 2 3 15

Step 4 1 2 3 5



enhanced-bubble-sort.webp

Insertion Sort

insert one element at a time
If reversely sorted you will need to swap every item
O(N 2) Time Complexity
O(N) Best Time Complexity
Good for if data is almost sorted

Step View

Step 1 8 34 64 51 32 21

Step 2 8 34 64 51 32 21

Step 3 8 32 34 51 64 21

Step 4 8 21 32 34 51 64

// bubble sort 
int i, j; 
for (i = 0; i < n - 1; i++) 

// Last i elements are already 
// in place 
for (j = 0; j < n - i - 1; j++) 

if (arr[j] > arr[j + 1]) 
swap(arr[j], arr[j + 1]); 

C++

// insertion sort 
int i, key, j;

C++



Shell Sort

A sorting algorithm that allows for comparison of not adjacent items
h-sort  all elements spaced h  apart are sorted
Performing h-sort using insertion sort, the items compared are not longer adjacent - potential for
improvement

for (i = 1; i < n; i++) {
key = arr[i];
j = i - 1;

// Move elements of arr[0..i-1],
// that are greater than key, 
// to one position ahead of their
// current position
while (j >= 0 && arr[j] > key) {

arr[j + 1] = arr[j];
j = j - 1;

}
arr[j + 1] = key;

}

for (int gap = n/2; gap > 0; gap /= 2) 
{ 

// Do a gapped insertion sort for this gap size. 
// The first gap elements a[0..gap-1] are already in gapped order 
// keep adding one more element until the entire array is 
// gap sorted  
for (int i = gap; i < n; i += 1) 
{ 

// add a[i] to the elements that have been gap sorted 
// save a[i] in temp and make a hole at position i 
int temp = arr[i]; 

// shift earlier gap-sorted elements up until the correct  
// location for a[i] is found 
int j;             
for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) 

arr[j] = arr[j - gap]; 
  
//  put temp (the original a[i]) in its correct location 
arr[j] = temp; 

} 
} 
return 0; 

C++



Sorting 2
Any comparison based sorting requires Ω(NlogN) comparisons

A General Lower Bound For Sorting

The root represents the set of all possible orderings: when the sorting algorithm is given a array to
sort, any possible ordering is possible!
Each node performs one comparison, which patricians its set of orderings into two sets based on the
comparison results. The two children are in each of its set, respectively.
The algorithm needs to perform enough comparison to get a set that contains one ordering (the sorting
result).
Each comparison based sorting algorithm can be represented by a binary decision tree.
The worst case is the largest set of comparisons possible needed.

This is the height of the decision tree

Different algorithms differ in items selected for comparison at each node.
The most efficient algorithm is the one with the smallest height.
We know the number of leaves in the tree

The number of possible sorted orders of N items, let us denote it as X
To get the minimum tree height of the decision tree, let us decide the number of leaves on the tree

Number of leaves = number of orderings N numbers
N ! = N ∗ (N − 1) ∗ (N − 2)∗. . . 2 ∗ 1

For a binary tree to have N! leaves, the tree is at least...
log(N !) = Log(N) + log(N − 1)+. . . +1

≥ log(N) + log(N − 1)+. . . +Log( N
2 )

≥ log( N
2 ) + log( N

2 )+. . . +Log( N
2 )

≥ N
2 ∗ Log( N

2 ) = Ω(NlogN)

No Comparison Based Sorting can be better than N(Log(N))
Heapsort, Mergesort, and Quicksort - N(Log(N))

Heap Sort

Build binary minheap of N elements
O(N)

The perform N deletemin operations
Log(N) time per deletemin

N(Log(N))
Requires another array to store results
To eliminate this requirement

using heap to store sorted elements
using maxheap instead

void heapify(int arr[], int N, int i)
{
 
    // Initialize largest as root
    int largest = i;
 
    // left = 2*i + 1

C++



Merge Sort

Divide N values to be sorted into two halves

    int l = 2 * i + 1;
 
    // right = 2*i + 2
    int r = 2 * i + 2;
 
    // If left child is larger than root
    if (l < N && arr[l] > arr[largest])
        largest = l;
 
    // If right child is larger than largest
    // so far
    if (r < N && arr[r] > arr[largest])
        largest = r;
 
    // If largest is not root
    if (largest != i) {
        swap(arr[i], arr[largest]);
 
        // Recursively heapify the affected
        // sub-tree
        heapify(arr, N, largest);
    }
}
 
// Main function to do heap sort
void heapSort(int arr[], int N)
{
 
    // Build heap (rearrange array)
    for (int i = N / 2 - 1; i >= 0; i--)
        heapify(arr, N, i);
 
    // One by one extract an element
    // from heap
    for (int i = N - 1; i > 0; i--) {
 
        // Move current root to end
        swap(arr[0], arr[i]);
 
        // call max heapify on the reduced heap
        heapify(arr, i, 0);
    }
}
 
// A utility function to print array of size n
void printArray(int arr[], int N)
{
    for (int i = 0; i < N; ++i)
        cout << arr[i] << " ";
    cout << "\n";
}



Recursively sort each half using merge sort
Base case N = 1, no sorting required

Merge two halves into one list
Keep a counter for each list starting at the start of each list
Compare the two values indexed by the counters, output the smaller value and increment the counter
when one list is processed output all items in the other list

4, 1, 9, 4
2, 5, 6, 8
Compare 4 and 2 and output 2

Complexity

T(N) complexity when size N
Merge O(N)
Complexity O(NLogN)

Quick Sort

Fastest sorting algorithm in practice
Caveat: not always stable
Can do it as a stable sort

Average Complexity: O(NLog(N))

Worst Complexity: O(N 2)

Rare
Can vary in space complexity

Sorting 3 For More....



Sorting 3

Quick Sort

Given array S to be sorted
• If size of S < 1 then done;
• Pick any element v in S as the pivot
• Partition S-{v} (remaining elements in S) into two groups
• S1 = {all elements in S-{v} that are smaller than v}
• S2 = {all elements in S-{v} that are larger than v}
• Return {quicksort(S1) followed by v followed by quicksort(S2) }
• Trick lies in handling the partitioning (step 3).
• Picking a good pivot
• Efficiently partitioning in-place

Difference-Between-Quicksort-and-Merge-Sort_Figure-1.webp

Picking the Pivot

Partition takes O(N) time.
Middle

T(N) = 2 T(N/2) + N, T(N) = O(N log N) – same as the merge sort

Min/Max
T(N) = T(N-1) + N, same as insertion sort, T(N) = O(??)

Strategy 1: Pick the first element in S
works only if input is random
Quicksort is recursive, so sub-problems could be sorted

Strategy 2: Pick the pivot randomly
Expensive operation
Usually works well



works well with mostly sorted

Strategy 3: Median-of-three Partitioning
Ideally, the pivot should be the median of input array S
divide the input into two almost equal partitions
Pivot = median of the left-most, right-most and center element
Solves the problem of sorted input

Example

• Example: Median-of-three Partitioning
– Let input S = {6, 1, 4, 9, 0, 3, 5, 2, 7, 8}
– left=0 and S[left] = 6
– right=9 and S[right] = 8
– center = (left+right)/2 = 4 and S[center] = 0
– Pivot
• = Median of S[left], S[right], and S[center]
• = median of 6, 8, and 0
• = S[left] = 6

Partitioning Algorithm

When Dealing With Small Arrays

Insertion sort in the best under ten items
Quick sort is recursive so it may take a long time sorting small arrays
Hybrid (Switch between insertion and quick sort depending on array size)

Code Examples

While (i < j)
Move i to the right till we find a number greater than pivot
Move j to the left till we find a number smaller than pivot
If (i < j) swap(S[i], S[j])

//(The effect is to push larger elements to the right and smaller elements to the left)
Swap the pivot with S[i]

C++

template <typename Comparable>
void quicksort( vector<Comparable> & a, int left, int right )
{

if( left + 10 <= right )
{

const Comparable & pivot = median3( a, left, right ); 
// Begin partitioning
int i = left, j = right - 1;
for( ; ; ) {

while( a[ ++i ] < pivot ) { }
while( pivot < a[ --j ] ) { }
if( i < j )

std::swap( a[ i ], a[ j ] );
else

break;
}
std::swap( a[ i ], a[ right - 1 ] ); // Restore pivot
quicksort( a, left, i - 1 ); // Sort small elements
quicksort( a, i + 1, right ); // Sort large elements
}

C++



Runtime

Worst Case: O(n2)

Best Case: O(n ∗ logn)

Average Case: O(n ∗ logn)

Linear Time Sorts
Comparison based sorting requires Ω(NlogN) time in the worst case
Linear sorting applies to special cases

Bucket Sort

Input: A1, A2, , . . . AN of positive integers smaller than M
Output: Sorted list of integers
Algorithm:

Keep an array with counts of each occurrence of the data
Set each count to 0
Need to know your data range

Complexity? O(N+M)
What if the data has other fields than the key?

Modify the count array to be an array of buckets
Is the sorting stable in this case?

good if M is the same order as N
limitation: needs an O(M) space so M cannot be very large

Radix Sort

What if we want to use the idea of Bucket sort to sort based on social security number
We can use a count array of size 1000 and perform bucket sort 3 times to sort based on the social
security number

Use bucket sort to sort from the last sig bits to the most sig bits
Sort based on the last three digits in the first pass
sort based on the middle three digits in the second pass
sort based on the first three digits in the third pass

Because bucket sort is stable

else // Do an insertion sort on the subarray
insertionSort( a, left, right )

}



Graphs Algorithms
A GRAPH G = (V, E)

V : set of vertices (nodes)
E : set of edges (links)

Complete graph
There is an edge between every pair of vertices
Tow kinds of graph

undirected
directed (digraph)

Undirected graph
- E consists of sets of two elements each: Edge (u,v) is the same as {v,u}

Terminology

Adjacency
Vertex w is adjacent to v if and only if (v, w) is in E

Weight
A const parameter associated with each edge

Path
Sequence of vertices where there is an edge for each pair of consecutive vertices

Length of path
Number of edges along path
Length of a path of n vertices is n-1

Cycles

A path is simple if all its vertices are distinct (first and last may be equal)
A cycle path is a path w1,w2, . . .wn = w1

A cycle is simple if the path is simple
It has a loop if a node repeats

An undirected graph is connected if
Each pair of vertices u,v there is a path that starts at u and ends at v

A digraph H that satisfies the above condition is strongly connected
Otherwise if H is not strongly connected, but the undirected graph G with the same set of vertices and
edges is connected, H is said to be weakly connected
BFS Finds all nodes

Representation of Graphs
To store graph information, we need to store the connectivity (link) information.
Two popular representations

Adjacency matrix
Use a 2d array to store the connectivity: A[u][v]  is true if there is an edge from u to v, false
otherwise

\

Adjacency matrix

A[u][v]  is true if there is an edge from u to v
False otherwise



For a weighted graph, assign weight instead of t or f
O(1) time to decide whether (u,v) is an edge
A[N][N]  - O(|V|^2) space
Wasteful if the graph is sparse, not too many edges

Adjacency list
Each node maintains a list of neighbors
Need to go through the list to decide if u, v is an edge

Topological Sorting

Let G be a directed acyclic graph (DAG)
an ordering the vertices of G such that if there is an edge from vi to vj appears after vi

In a DAG, there must be a vertex with no incoming edges
Have each vertex maintain its indegree, indegree of v = number of edges (u, v)
Repeat

Find a vertex of current indegree 0
assign it a rank
reduce the indegrees of the vertices in its adjacency list

Single Source Shortest Path Problem

Unweighted shortest paths
BFS

Weighted
Dijkstras algorithm

1. Pick one node with the shortest distance

void Graph()::topsort{
for(int counter = 0; counter < NUM_VERT; counter++){

Vertex v - findNewVertexOfIndegreeZero();
if(v == NOT_A_VERTEX){

throw CycleFoundException()
}
v.topNum = counter;
for each Vertex w adjacent to v

w.indegree--;
}

}

void Graph::topsort(){
Queue<Vertex> q;
int counter = 0;
q.makeEmpty();
for each Vertex v

if( v.indegree == 0){
q.dequeue(v);

}
while(!q.isEmpty){

Vertex v = q.dequeue();
v.topNum ++counter;

for each Vertex w adjacent to v
if(--w.indegree == 0)

// Etc
}

}

C++



2. Update the distance for all nodes that are adjacent to the picket node
3. repeat till all nodes are picked



Chapter 4 to 7 Review

Trees
A tree is a connected graph with no cycle
Rooted tree: a connected graph with no cycle and a particular node called a root

Parent node, child node, sibling node, ancestors, decendants, leaf nodes
Depth of vertex - number of edges from the node to the tree's root node. A root node will have a
depth of 0.
Height of vertex - number of edges on the longest path from the node to a leaf. A leaf node will have
a height of 0.

Insert (Recursive)

Delete (Recursive)

if (root == nullptr) {
        return new TreeNode(key);
    }

    if (key < root->key) {
        root->left = insert(root->left, key);
    } else if (key > root->key) {
        root->right = insert(root->right, key);
    }

    return root;

C++

if (root == nullptr) {
        return root;
    }

    if (key < root->key) {
        root->left = deleteNode(root->left, key);
    } else if (key > root->key) {
        root->right = deleteNode(root->right, key);
    } else {
        if (root->left == nullptr) {
            TreeNode* temp = root->right;
            delete root;
            return temp;
        } else if (root->right == nullptr) {
            TreeNode* temp = root->left;
            delete root;
            return temp;
        }

        TreeNode* temp = minValueNode(root->right);

        root->key = temp->key;

        root->right = deleteNode(root->right, temp->key);
    }

C++



Find Min (Recursive)

A binary tree is a data structure in which each node has at most two children, referred to as the left child
and the right child. Every node, except for the leaves, has exactly one parent. The left and right children
of a node are distinct, and the difference in the number of nodes between the left and right subtrees of
any node is at most one.

A complete binary tree is a special type of binary tree in which all levels are completely filled, except
possibly for the last level, which is filled from left to right. In other words, all nodes are as left as
possible in each level.

Pre-order Traversal:

1. Visit the root node.
2. Traverse the left subtree in pre-order.
3. Traverse the right subtree in pre-order.

In-order Traversal:

1. Traverse the left subtree in in-order.
2. Visit the root node.
3. Traverse the right subtree in in-order.

Post-order Traversal:

1. Traverse the left subtree in post-order.
2. Traverse the right subtree in post-order.
3. Visit the root node.

Level-order Traversal (Breadth-First Traversal):

1. Start at the root node.
2. Traverse each level of the tree from left to right.

Binary Search Tree

There is an order relation ≤ defined for the vertices of B
For any vertex v, and and descendant u of v.left u ≤ v
For any vertex w, and and descendant u of w.right u ≤ w
also known as a totally ordered tree

Operation Description

Insert
Start at the root. Compare the key to be inserted with the key of the current node. If the key is
less, move to the left subtree; if greater, move to the right subtree. Repeat this process until
reaching a null position, then insert the new node with the given key at this position.

Delete

Search for the node to be deleted starting at the root. Identify different cases: if the node has no
children (a leaf node), remove it; if the node has one child, replace the node with its child; if the
node has two children, find the in-order successor (or predecessor), replace the node's key with
the successor's (or predecessor's) key, and then recursively delete the successor (or
predecessor).

TreeNode* current = node;

    while (current->left != nullptr) {
        current = current->left;
    }

    return current;

C++



Operation Description

Search

Start at the root. Compare the key to be searched with the key of the current node. If the key is
equal to the current node's key, you have found the node. If the key is less, move to the left
subtree; if greater, move to the right subtree. Repeat this process until you find the node with the
matching key or reach a null position, indicating the key is not in the tree.

More info on binary search trees can be found in Trees 2 🌲

AVL Tree

An AVL tree is a binary search tree with the balance condition, for every node in the tree, height of left
and right subtree can differ at most by 1. An avl tree is maintained by fixing the nodes that violate this
condition after each insertion or deletion. Fixing is done through either single or double rotation.

Check from the parent of the newly inserted node upwards to the root to ensure that the AVL tree is not
being violated by a newly inserted node.

B-tree

A b-tree is a m-ary search tree with the following balance restrictions

Data items are stored at the leaves
Non leaf nodes store up to M-1  keys to guide the searching, keys are sorted within a node, Key i
represents the smallest key in the subtree (i+1)
The root can either be a lead, or have between 2 to M children
All non-leaf nodes except the root have between ceil(M/2)  and M  children
All leaves are stored at the same and have between ceil(l/2)  and l  data items for some l
In other words, each node except for the root is at least half full

Hash Table

Hash table is a vector of lists, conflicts are resolved with the list. Multiple items can be stored in one
list.

If collision occurs try another cell to look
Try cells h0(x), h1(x), . . . in succession until a free cell is found
This is called linear probing

A partially ordered tree (POT) is a tree T such that



There is an order relation ≤ defined for the vertices of T
For any vertex p and any child c of p, p ≤ c

Partially ordered complete binary tree
Allowing vector representation of the tree

For more on hash tables view... Hash Table and Hash Table 2

Priority Queue

Each job within a computer takes turns using the cpu. If a job comes earlier than another job it needs to
be executed earlier. If a job has been scheduled, it should not be scheduled a second time if there exists
a job that hasn't been scheduled once. The queue is the answer.

Vector Representation

sorting the tree in level order continuously
may start from index 0 or index 1

Different starting affects the trees navigation

Heap operations

DeleteMIN decreased the heap size by one
Move the last element to the root and percolate down from the root

Percolate Up (Heapify Up):

This operation is typically used during the insertion of a new element into the priority queue.

1. Insert Element at the Bottom:
Insert the new element at the bottom of the heap (last position).

2. Compare with Parent and Swap:
Compare the value of the new element with its parent.
If the value of the new element is greater (for a max-heap) or smaller (for a min-heap) than its
parent, swap the element with its parent.
Repeat this process until the heap order property is restored.

Percolate Down (Heapify Down):

This operation is typically used during extraction or removal of the top element from the priority queue.

1. Replace Top with Bottom:
Replace the top element (the root) with the last element at the bottom of the heap.

2. Compare with Children and Swap:
Compare the value of the new root with its children.
If the value is smaller (for a max-heap) or greater (for a min-heap) than at least one of its
children, swap the element with the smaller (for a max-heap) or larger (for a min-heap) child.
Repeat this process until the heap order property is restored.

Building the heap

Inserting one by one resulting in O(N log N) heap building algorithms



A better O(N) heap building algorithm builds head from bottom up by percolate elements backward (from
N/2 to 1).


